SPARSE KERNEL MACHINES




Motivation

Inference can be slow for kernel methods, as the kernel k(x,x ) must be
evaluated for the new data point x against all training data points x .

In a sparse kernel machine, the kernel k(x,x ) need only be
evaluated for a subset of the training data.

We will focus in particular on the Support Vector Machine (SVM),
applied to classification problems.

SVMs are discriminative decision machines:
they do not provide posterior probabilities.
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Support Vector Machines

SVMs are based on the linear model y(x)=w'¢(x)+ b

Assume training data x,...,x,, with coresponding target values
t,...t,t e{-11}

x classified according to sign of y(x).

Assume for the moment that the training data are linearly separable in feature space.

Then3w,b:t y(x,)>0 Vne[l...N]
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Maximum Margin Classifiers
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When the training data are linearly separable, there are generally an
infinite number of solutions for (w, b) that separate the classes exactly.

The margin of such a classifier is defined as the orthogonal distance in
feature space between the decision boundary and the closest training
vector.

SVMs are an example of a maximum margin classifer, which finds the
linear classifier that maximizes the margin.

margin
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Probabilistic Motivation

The maximum margin classifier has a probabilistic motivation.

If we model the class-conditional densities with a KDE using
Gaussian kernels with variance ¢, then in the limit as ¢ — 0,
the optimal linear decision boundary — maximum margin linear classifier.

margin
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Two Class Discriminant Function

y>0 L2

Let f(-) be the identity: R
y(x)=w'x+w,

y(x)=0— x assigned to C,
y(x) <0 — x assigned to (,

Thus y(x)= 0 defines the decision boundary
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Maximum Margin Classifiers

Distance of point x  from decision surface is given by:

Thus we seek:

g ma {imljn[tn(wt‘l’(xn)_"b)}}

w,b ||W
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Maximum Margin Classifiers

Distance of point x _ from decision surface is given by:

Note that rescaling w and b by the same factor
leaves the distance to the decision surface unchanged.

Thus, wlog, we consider only solutions that satisfy:

t (wt(p(xn)+b) =1.
for the point x  that is closest to the decision surface.

margin
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Quadratic Programming Problem

Then all points x_ satisfy t_ (wt¢(xn)+ b) >1

Points for which equality holds are said to be active.
All other points are inactive.

Now argmax {L mni”[fn (wip(x,)+ b)}}

w,b W|

2

1 .
< —argmin|w
romin

Subjectto t_ wt¢(xn)+ b) >1Vx_

This is a quadratic programming problem. agin
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Quadratic Programming Problem

%arg min ||w||2 subjectto t. (wt(p (xn ) + b) >1Vx_

Solve using Lagrange multipliers a_:

L(w,b,a)= %arg min ||w||2— iaﬂ {tn (wt¢(xn)+ b) —~ 1}

w

margin
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Dual Representation

Solve using Lagrange multipliers a_:

L(w,b,a)= %arg min ||w||2— iaﬂ {tn (wt¢(xn)+ b) - 1}

w

Setting derivatives with respect to w and b, we get:

W = iaﬂtngb(xn)

margin

YO RK ' CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

IIIIIIIIII

J. Elder



Dual Representation

Substituting for w and b leads to the dual representation
of the maximum margin problem, in which we maximize:

L(a)= Za ——ZZanamtntmk(x X, )

n1m1

with respect to a, subject to:
a =20Vn

N
Z antn =0
n=1

and where k(x,x') = d(X)' p(X)

margin
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Dual Representation

N
Using w = Zantngb(xn ), @ new point x is classified by computing
n=1

y(X)= zN: atk(x,x)+b

n=1

The Karush-Kuhn-Tucker (KKT) conditions for this constrained optimization problem are:

a =0
ty(x,)-120 y:—_10
an{tny(xn)—1}:0 ’ y=1

Thus for every data point, eithera =0 ort y (xn) =1 ~\f .

support vectors
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Solving for the Bias

Once the optimal a is determined, the bias b can be computed from

b= NLZ(tn B 2 amtmk(xn’xm)j

S neS meS
where S is the index set of support vectors and N is the number of support vectors.
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Example (Gaussian Kernel)
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Overlapping Class Distributions

The SVM for non-overlapping class distributions can be expressed as the minimization of

N
2E.(y(x,)t, = 1)+ Afw]
n=1

where E_(z) is 0 if z> 0, and < otherwise.

This forces all points to lie on or outside the margins, on the correct side for their class.

To allow for misclassified points, we have to relax this E_ term.

XQIR{S,IS ' CSE 6390/PSYC 6225 Computational Modeling of Visual Perceptton §¢=0 J. Elder



Slack Variables

To this end, we introduce N slack variables <§n >0, n=1,...N.

¢ =0 for points on or on the correct side of the margin boundary for their class

gn =

Thus ¢ <1 for points that are correctly classified

t —y (xn)‘ for all other points.

¢ >1for points that are incorrectly classified

We now minimize Ci S + %”w”2 , where C > 0. y=—1
n=1

subjectto t y(x )21-&, and & >0, n=1...N

e&=0
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Dual Representation

This leads to a dual representation, where we maximize

L(a Za ——ZZanamtntmk(x X )

n1m1

with constralnts
O<a <C

and
N
at =0

n=1
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Support Vectors

Again, a new point x is classified by computing

N
y(x)=Y atk(x,x )+b
n=1

For points that are on the correct side of the margin, a = 0.

Thus support vectors consist of points between their margin and the decision boundary,
as well as misclassified points.

y=—1
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Bias

Again, a new point x is classified by computing

N
y(x)=Y atk(x,x )+b
n=1

Once the optimal a is determined, the bias b can be computed from

b = Ni Z [tn B 2 amtmk(xn’xm)j

M neM meS
where

S is the index set of support vectors y=0
N, is the number of support vectors

M is the index set of points on the margins
N,, is the number of points on the margins
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Solving the Quadratic Programming Problem

Za ——ZZanamtntmk(x X,)

n1m1

N
subjectto0<a <Cand Y at =0

Problem is convex.
Solutions are generally O(N3).

Traditional quadratic programming techniques often infeasible
due to computation and memory requirements.

Instead, heuristic methods such as sequential minimal
optimization can be used, that in practice are found to scale as

O(N) - O(N2).
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Input Space

Example

J. Elder
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Relation to Logistic Regression

The objective function for the soft-margin SVM can be written as:

N 2
3 (0, 2w
where E, (z) = [1 — zl is the hinge error function,

and [z] =zifz=>0

+

=0 otherwise.

For t € {-1,1}, the objective function for a regularized version
of logistic regression can be written as: E(z)

N 2
S E0(r,0)+ 2w

where E, (z) =log (1 + exp(—z)).

—2 —1 0 1 2
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Multiclass SVMs

We encounter the same problems we experienced
with least-squares.
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One-Versus-The-Rest
T | SpameKemelMachnes |

o ldea #1: Just use K-1 discriminant functions, each of which
separates one class (; from the rest.

71 Problem: Ambiguous regions

not C;

not C»
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One-Versus-The-Rest

Possible Solution: select class according to: argmaxy, (x)
k

Problems:

Classifiers were all trained separately.

Methods for joint training have been proposed — slows training.
Training is imbalanced (e.g., for K=10 classes, 10% in-class, 20%
out-of-class)

Can be solved by using t e {—%,1}.

Ci

not C;
not Co
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One-Versus-One

ldea #2: Use K(K-1)/2 discriminant functions, each
of which separates two classes (;, (; from each
other.

Each point classified by majority vote.
Problems:

Ambiguous regions

Expensive
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Root-Mean-Square Error
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Methods Submitted

Hierarchy of Gaussian models
Treat x and y coordinates as independent

Probabilistic PCA

Gaussian mixtures
Mean shift

Use sample mean rather than theoretical mean
Approximate mean as an ellipse

Local Gaussian model

Bi-arc interpolation
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Some Things We've Learned

Use the book!
The curse of dimensionality
Probabilistic PCA

The importance of coding correctly!
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Assignment 2

Classify shapes as ‘animal’ or ‘vegetable’
Winner has the highest proportion correct

May be tough to beat nearest-neighbour for this

%ﬁ\
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Classifiers Provided
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SVMs for Regression

In standard linear regression, we minimize
1< 2 A 2

— -t ) +—=|wW

> 2= t,) + 5wl

This penalizes all deviations from the model.

To obtain sparse solutions, we replace the quadratic error function
by an e-insensitive error function, e.g.,

0, if ‘y(x)-t‘<£

y(x)

E, (y(x)—t):<

‘ y(X)- t‘ — g, otherwise

See text for details of solution.
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Example
N
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Relevance Vector Machines

Some drawbacks of SVMs:
Do not provide posterior probabilities.
Not easily generalized to K > 2 classes.

Parameters (C, € ) must be learned by cross-validation.

The Relevance Vector Machine is a sparse

Bayesian kernel technique that avoids these
drawbacks.

RVMs also typically lead to sparser models.
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RVMs for Regression

p(tIx.w.5)=N(t]y(x).5”)

where y(x) = w'¢(x)

In an RVM, the basis functions ¢(x) are kernels k(x,xn):

y(x)= iwﬂk(x,xn) +b

However, unlike in SVMs, the kernels need not be
positive definite, and the x  need not be the training data points.
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RVMs for Regression

Likelihood:

p(th,W,ﬁ): Hp(tn |Xn,W,ﬁ)

where the n™ row of X is x;.

Prior:

p(w|a)=f[N(w,|o,a;1)

Note that each weight parameter has its own precision hyperparameter.

YQ RK ' CSE 6390/PSYC 6225 Computational Modeling of Visual Perception J. Elder

UNIVERSITE
UNIVERSITY



RVMs for Regression

pw,|o,)= N(W,- |O,oc,.‘1) Gaussian prior Marginal prior: single o Independent o

W,

p(,)=Gam(e, | a,b)

p(w,)=St(w,|0,a/b,2a)

The conjugate prior for the precision of a Gaussian is a gamma distribution.

Integrating out the precision parameter thus leads to a Student’s t distribution
over w..

Thus the distribution over w is a product of Student’s t distributions.
As a result, maximizing the evidence will yield a sparse w.

Note that to achieve sparsity it is critical that each parameter w.has a separate
precision ..
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RVMs for Regression

pw, | o) = N(W,- |0,(x,.‘1) Gaussian prior Marginal prior: single o Independent o

W,

p(c,)=Gam(e,|a,b)

p(w,)=St(w,|0,a/b,2a)

If we leta— 0,b — 0, then p(log e, ) — uniform and p(w, ) - ‘Wi‘_1 .
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RVMs for Regression

Likelihood:
N

p(th,W,ﬁ): Hp(tn |Xn,W,ﬂ)
n=1

where the n™ row of X is x;.

Prior:

p(w|a)=f[N(w,|o,a;1)

In practice, it is difficult to integrate & out exactly.
Instead, we use Type |l Maximum Likelihood, finding ML values for each ..

When we maximize the evidence with respect to these hyperparameters,
many will > oo,

As a result, the corresponding weights will 2 0, yielding a sparse solution.
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RVMs for Regression

Since both the likelihood and prior are normal, the posterior over w will
also be normal:

Posterior:
p(w | t,X,a,ﬁ) = N(w | m,Z)
where

m = [ZO't

5 =(A+poid)

and

D=9, (xn)

A = diag(c,)

i
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RVMs for Regression

The values for & and f3 are determined using the evidence approximation,
where we maximize

p(tIX.a.B)=[p(tIX,w.B)p(w]|c)dw

In general, this results in many of the precision parameters o, — <o,
so that w, — 0.

Unfortunately, this is a non-convex problem.
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