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Motivation 

   

Inference can be slow for kernel methods, as the kernel k(x,xn) must be 
evaluated for the new data point x against all training data points xn.

   

In a sparse kernel machine, the kernel k(x,xn) need only be 
evaluated for a subset of the training data.

  

We will focus in particular on the Support Vector Machine (SVM),
applied to classification problems.

  

SVMs are discriminative decision machines:  
they do not provide posterior probabilities.
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Support Vector Machines 

   SVMs are based on the linear model y(x) = w tφ(x) + b

    

Assume training data x1,…,xN  with coresponding target values
t1,…,tN,  tn ∈{−1,1}.

   x classified according to sign of y(x).

 Assume for the moment that the training data are linearly separable in feature space.

    Then ∃w,b : tny xn( ) > 0 ∀n ∈[1,…N]
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Maximum Margin Classifiers 

  When the training data are linearly separable, there are generally an 
infinite number of solutions for (w, b) that separate the classes exactly. 

  The margin of such a classifier is defined as the orthogonal distance in 
feature space between the decision boundary and the closest training 
vector. 

  SVMs are an example of a maximum margin classifer, which finds the 
linear classifier that maximizes the margin. 

y = 1
y = 0

y = −1

margin
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Probabilistic Motivation 

  The maximum margin classifier has a probabilistic motivation. 

y = 1
y = 0

y = −1

margin

 

If we model the class-conditional densities with a KDE using 
Gaussian kernels with variance σ 2, then in the limit as σ → 0, 
the optimal linear decision boundary→ maximum margin linear classifier.
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Two Class Discriminant Function 

   

Let f (⋅) be the identity:
y(x) = w tx +w0

    

y(x) ≥ 0→ x assigned to C1

y(x) < 0→ x assigned to C2

   Thus y(x) = 0 defines the decision boundary

x2

x1

w
x

y(x)
‖w‖

x⊥

−w0
‖w‖

y = 0
y < 0

y > 0

R2

R1
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Maximum Margin Classifiers 

y = 1
y = 0

y = −1

margin

   

Distance of point xn  from decision surface is given by:

tny xn( )
w

=
tn w tφ xn( ) + b( )

w

   

Thus we seek:

argmax
w ,b

1
w

min
n

tn w tφ xn( ) + b( )⎡
⎣

⎤
⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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Maximum Margin Classifiers 

y = 1
y = 0

y = −1

margin

   

Distance of point xn  from decision surface is given by:

tny xn( )
w

=
tn w tφ xn( ) + b( )

w

  

Note that rescaling w  and b by the same factor 
leaves the distance to the decision surface unchanged.

 

Thus, wlog, we consider only solutions that satisfy:

   

tn w tφ xn( ) + b( ) = 1.

for the point xn  that is closest to the decision surface.
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Quadratic Programming Problem 

y = 1
y = 0

y = −1

margin

   
Then all points xn  satisfy tn w tφ xn( ) + b( ) ≥1

  

Points for which equality holds are said to be active.
All other points are inactive.

   

Now argmax
w ,b

1
w

min
n

tn w tφ xn( ) + b( )⎡
⎣

⎤
⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

↔
1
2

argmin w
2

w

Subject to tn w tφ xn( ) + b( ) ≥1 ∀xn

  This is a quadratic programming problem.
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Quadratic Programming Problem 

y = 1
y = 0

y = −1

margin

   

1
2

argmin w
2

w

,  subject to tn w tφ xn( ) + b( ) ≥1 ∀xn

   

Solve using Lagrange multipliers an :

L(w,b,a) = 1
2

argmin w
2

w

− an tn w tφ xn( ) + b( ) −1{ }
n=1

N

∑
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Dual Representation 

y = 1
y = 0

y = −1

margin

   

Solve using Lagrange multipliers an :

L(w,b,a) = 1
2

argmin w
2

w

− an tn w tφ xn( ) + b( ) −1{ }
n=1

N

∑

   

Setting derivatives with respect to w  and b, we get:

w = antnφ(xn)
n=1

N

∑

antn
n=1

N

∑ = 0
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Dual Representation 

y = 1
y = 0

y = −1

margin

    

Substituting for w  and b leads to the dual representation 
of the maximum margin problem, in which we maximize:

L a( ) = an
n=1

N

∑ −
1
2

anamtntmk xn,xm( )
m=1

N

∑
n=1

N

∑
with respect to a,  subject to:
an ≥ 0 ∀n

antn
n=1

N

∑ = 0

and where k x, ′x( ) = φ(x)tφ( ′x )
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Dual Representation 

   

Using w = antnφ(xn)
n=1

N

∑ ,  a new point x is classified by computing

y(x) = antnk(x,xn)
n=1

N

∑ + b

   

The Karush-Kuhn-Tucker (KKT) conditions for this constrained optimization problem are:
an ≥ 0

tny xn( ) −1≥ 0

an tny xn( ) −1{ } = 0

   Thus for every data point, either an = 0 or tny xn( ) = 1.

y = 1

y = 0

y = −1

support vectors 
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Solving for the Bias 

   

Once the optimal a is determined, the bias b can be computed from

b =
1

NS

tn − amtmk(xn,xm)
m∈S
∑⎛

⎝⎜
⎞
⎠⎟n∈S

∑
where S is the index set of support vectors and NS  is the number of support vectors.
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Example (Gaussian Kernel) 

Input Space 

  x1

  x2
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Overlapping Class Distributions 

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

   

The SVM for non-overlapping class distributions can be expressed as the minimization of

E∞ y xn( ) tn −1( )
n=1

N

∑ + λ w
2

where E∞(z) is 0 if z ≥ 0, and ∞ otherwise.

 This forces all points to lie on or outside the margins, on the correct side for their class.

 To allow for misclassified points, we have to relax this E∞  term.
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Slack Variables 

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

   To this end, we introduce N  slack variables ξn ≥ 0, n = 1,…N.

  ξn = 0 for points on or on the correct side of the margin boundary for their class

   
ξn = tn − y xn( )  for all other points.

  

Thus ξn <1 for points that are correctly classified
ξn >1 for points that are incorrectly classified

   
We now minimize C ξn

n=1

N

∑ +
1
2

w
2
, where C > 0.

   subject to tny xn( ) ≥1− ξn,  and ξn ≥ 0, n = 1,…N
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Dual Representation 

    

This leads to a dual representation, where we maximize

L(a) = an
n=1

N

∑ −
1
2

anamtntmk xn,xn( )
m=1

N

∑
n=1

N

∑
with constraints
0 ≤ an ≤C
and

antn
n=1

N

∑ = 0

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0
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Support Vectors 

   

Again, a new point x is classified by computing

y(x) = antnk(x,xn)
n=1

N

∑ + b

  For points that are on the correct side of the margin, an = 0.

 

Thus support vectors consist of points between their margin and the decision boundary,
as well as misclassified points.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0
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Bias 

   

Again, a new point x is classified by computing

y(x) = antnk(x,xn)
n=1

N

∑ + b

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

    

Once the optimal a is determined, the bias b can be computed from

b =
1

NM

tn − amtmk(xn,xm)
m∈S
∑⎛

⎝⎜
⎞
⎠⎟n∈M

∑
where 
S is the index set of support vectors
NS  is the number of support vectors
M  is the index set of points on the margins
NM  is the number of points on the margins



Sparse Kernel Machines 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

22 

Solving the Quadratic Programming Problem 

  Problem is convex. 

  Solutions are generally O(N3). 

  Traditional quadratic programming techniques often infeasible 
due to computation and memory requirements. 

  Instead, heuristic methods such as sequential minimal 
optimization can be used, that in practice are found to scale as 
O(N) - O(N2). 

    

L(a) = an
n=1

N

∑ −
1
2

anamtntmk xn,xn( )
m=1

N

∑
n=1

N

∑

subject to 0 ≤ an ≤C  and antn
n=1

N

∑ = 0
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Example 

!2 0 2

!2

0

2

Input Space 

  x1

  x2
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Relation to Logistic Regression 

−2 −1 0 1 2
z

E(z)

   

The objective function for the soft-margin SVM can be written as:

ESV yntn( )
n=1

N

∑ + λ w
2

where ESV z( ) = 1− z⎡⎣ ⎤⎦+  is the hinge error function,

and z⎡⎣ ⎤⎦+ = z if  z ≥ 0

= 0 otherwise.

   

For t ∈{−1,1},  the objective function for a regularized version 
of logistic regression can be written as:

ELR yntn( )
n=1

N

∑ + λ w
2

where ELR z( ) = log 1+ exp(−z)( ).

 ESV

 ELR
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Multiclass SVMs 

  We encounter the same problems we experienced 
with least-squares. 
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One-Versus-The-Rest 

  Idea #1: Just use K-1 discriminant functions, each of which 
separates one class Ck from the rest.   

  Problem:  Ambiguous regions 

R1

R2

R3

?

C1

not C1

C2

not C2
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One-Versus-The-Rest 

  Possible Solution:  select class according to: 

  Problems: 
  Classifiers were all trained separately. 

  Methods for joint training have been proposed – slows training. 

  Training is imbalanced (e.g., for K=10 classes, 10% in-class, 90% 
out-of-class) 
  Can be solved by using 

R1

R2

R3

?

C1

not C1

C2

not C2

   
argmax

k
yk (x)

  
tn ∈ −

1
K −1

,1
⎧
⎨
⎩

⎫
⎬
⎭

.
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One-Versus-One 

  Idea #2: Use K(K-1)/2 discriminant functions, each 
of which separates two classes Cj, Ck from each 
other.  

  Each point classified by majority vote. 
  Problems:   

 Ambiguous regions 
 Expensive R1

R2

R3

?C1

C2

C1

C3

C2

C3
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Assignment 1 Results 
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Methods Submitted 

  Hierarchy of Gaussian models 
  Treat x and y coordinates as independent 
  Probabilistic PCA 
  Gaussian mixtures 
  Mean shift 
  Use sample mean rather than theoretical mean 
  Approximate mean as an ellipse 
  Local Gaussian model 
  Bi-arc interpolation 
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Some Things We’ve Learned 

  Use the book! 
  The curse of dimensionality 
  Probabilistic PCA 
  The importance of coding correctly! 
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Assignment 2 

  Classify shapes as ‘animal’ or ‘vegetable’ 
  Winner has the highest proportion correct 
  May be tough to beat nearest-neighbour for this 

dataset 
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Classifiers Provided 

NN Least Sq
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SVMs for Regression 

   

In standard linear regression, we minimize
1
2

yn − tn( )2

n=1

N

∑ +
λ
2

w
2

 This penalizes all deviations from the model.

   

To obtain sparse solutions, we replace the quadratic error function
by an ε-insensitive error function, e.g., 

Eε y(x) − t( ) = 0, if y(x) - t < ε

y(x) - t − ε,  otherwise

⎧
⎨
⎪

⎩⎪

 See text for details of solution.

y

y + ε

y − ε

y(x)

x

ξ̂ > 0

ξ > 0
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Example 

x

t

0 1

!1

0

1
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Relevance Vector Machines 

  Some drawbacks of SVMs: 
 Do not provide posterior probabilities. 
 Not easily generalized to K > 2 classes. 
 Parameters (C, ε) must be learned by cross-validation. 

  The Relevance Vector Machine is a sparse 
Bayesian kernel technique that avoids these 
drawbacks. 

  RVMs also typically lead to sparser models. 
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RVMs for Regression 

    p t | x,w,β( ) =N t | y(x),β−1( )
   where y(x) = w tφ(x)

   

In an RVM, the basis functions φ(x) are kernels k x,xn( ) :

y(x) = wnk x,xn( )
n=1

N

∑ + b

   

However, unlike in SVMs, the kernels need not be 
positive definite, and the xn  need not be the training data points.
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RVMs for Regression 

  Note that each weight parameter has its own precision hyperparameter. 

   

Likelihood:

p t | X,w,β( ) = p tn | xn,w,β( )
n=1

N

∏
where the nth  row of X is xn

t .

    

Prior:

p(w |α) = N wi | 0,α i
−1( )

i=1

M

∏
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RVMs for Regression 

  The conjugate prior for the precision of a Gaussian is a gamma distribution. 
  Integrating out the precision parameter thus leads to a Student’s t distribution 

over wi. 
  Thus the distribution over w is a product of Student’s t distributions. 
  As a result, maximizing the evidence will yield a sparse w. 
  Note that to achieve sparsity it is critical that each parameter wi has a separate 

precision αi. 

   
p(wi |α i ) =N wi | 0,α i

−1( )

  
p α i( ) = Gam α i | a,b( )

  
p wi( ) = St wi | 0,a / b,2a( )

Bayesian Inference: Principles and Practice in Machine Learning 16

case of a Gamma hyperprior, which we introduce for greater generality here. This combination of
the prior over αm controlling the prior over wm gives us what is often referred to as a hierarchical
prior. Now, if we have p(wm|αm) and p(αm) and we want to know the ‘true’ p(wm) we already
know what to do — we must marginalise:

p(wm) =
∫

p(wm|αm) p(αm) dαm. (27)

For a Gamma p(αm), this integral is computable and we find that p(wm) is a Student-t distribution
illustrated as a function of two parameters in Figure 8; its equivalent as a regularising penalty
function would be

∑
m log |wm|.

Gaussian prior Marginal prior: single ! Independent !

Figure 8: Contour plots of Gaussian and Student-t prior distributions over two parameters.
While the marginal prior p(w1, w2) for the ‘single’ hyperparameter model of Section
2 has a much sharper peak than the Gaussian at zero, it can be seen that it is
not sparse unlike the multiple ‘independent’ hyperparameter prior, which as well as
having a sharp peak at zero, places most of its probability mass along axial ridges
where the magnitude of one of the two parameters is small.

4.3 A Sparse Bayesian Model for Regression

We can develop a sparse regression model by following an identical methodology to the previous
sections. Again, we assume independent Gaussian noise: tn ∼ N(y(xn;w), σ2), which gives a
corresponding likelihood:

p(t|w,σ2) = (2πσ2)–N/2 exp
{
− 1

2σ2
‖t−Φw‖2

}
, (28)

where as before we denote t = (t1 . . . tN )T, w = (w1 . . . wM )T, and Φ is the N ×M ‘design’ matrix
with Φnm = φm(xn).

Following the Bayesian framework, we desire the posterior distribution over all unknowns:

p(w,α,σ2|t) =
p(t|w, α,σ2)p(w, α,σ2)

p(t)
, (29)

which we can’t compute analytically. So as previously, we decompose this as:

p(w, α,σ2|t) ≡ p(w|t, α,σ2) p(α,σ2|t) (30)

where p(w|t, α,σ2) is the ‘weight posterior’ distribution, and is tractable. This leaves p(α,σ2|t)
which must be approximated.

  w2

  w1
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RVMs for Regression 

   
p(wi |α i ) =N wi | 0,α i

−1( )

  
p α i( ) = Gam α i | a,b( )

  
p wi( ) = St wi | 0,a / b,2a( )

Bayesian Inference: Principles and Practice in Machine Learning 16

case of a Gamma hyperprior, which we introduce for greater generality here. This combination of
the prior over αm controlling the prior over wm gives us what is often referred to as a hierarchical
prior. Now, if we have p(wm|αm) and p(αm) and we want to know the ‘true’ p(wm) we already
know what to do — we must marginalise:

p(wm) =
∫

p(wm|αm) p(αm) dαm. (27)

For a Gamma p(αm), this integral is computable and we find that p(wm) is a Student-t distribution
illustrated as a function of two parameters in Figure 8; its equivalent as a regularising penalty
function would be

∑
m log |wm|.

Gaussian prior Marginal prior: single ! Independent !

Figure 8: Contour plots of Gaussian and Student-t prior distributions over two parameters.
While the marginal prior p(w1, w2) for the ‘single’ hyperparameter model of Section
2 has a much sharper peak than the Gaussian at zero, it can be seen that it is
not sparse unlike the multiple ‘independent’ hyperparameter prior, which as well as
having a sharp peak at zero, places most of its probability mass along axial ridges
where the magnitude of one of the two parameters is small.

4.3 A Sparse Bayesian Model for Regression

We can develop a sparse regression model by following an identical methodology to the previous
sections. Again, we assume independent Gaussian noise: tn ∼ N(y(xn;w), σ2), which gives a
corresponding likelihood:

p(t|w,σ2) = (2πσ2)–N/2 exp
{
− 1

2σ2
‖t−Φw‖2

}
, (28)

where as before we denote t = (t1 . . . tN )T, w = (w1 . . . wM )T, and Φ is the N ×M ‘design’ matrix
with Φnm = φm(xn).

Following the Bayesian framework, we desire the posterior distribution over all unknowns:

p(w,α,σ2|t) =
p(t|w, α,σ2)p(w, α,σ2)

p(t)
, (29)

which we can’t compute analytically. So as previously, we decompose this as:

p(w, α,σ2|t) ≡ p(w|t, α,σ2) p(α,σ2|t) (30)

where p(w|t, α,σ2) is the ‘weight posterior’ distribution, and is tractable. This leaves p(α,σ2|t)
which must be approximated.

  w2

  w1

  
If we let a→ 0,b→ 0, then p logα i( )→ uniform and p wi( )→ wi

−1
.



Sparse Kernel Machines 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

41 

RVMs for Regression 

  In practice, it is difficult to integrate α out exactly. 
  Instead, we use Type II Maximum Likelihood, finding ML values for each αi. 
  When we maximize the evidence with respect to these hyperparameters, 

many will ∞. 
  As a result, the corresponding weights will  0, yielding a sparse solution. 

   

Likelihood:

p t | X,w,β( ) = p tn | xn,w,β( )
n=1

N

∏
where the nth  row of X is xn

t .

    

Prior:

p(w |α) = N wi | 0,α i
−1( )

i=1

M

∏
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RVMs for Regression 

  Since both the likelihood and prior are normal, the posterior over w will 
also be normal: 

    

Posterior:
p w | t,X,α,β( ) =N w |m,Σ( )
where 
m = βΣΦt t

Σ = A + βΦtΦ( )−1

and 
Φni = φi xn( )
A = diag α i( )
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RVMs for Regression 

  The values for α and βare determined using the evidence approximation, 
where we maximize 

   p t | X,α,β( ) = p t | X,w,β( )p w |α( )dw∫

  

In general, this results in many of the precision parameters α i →∞,
so that wi → 0.

 Unfortunately, this is a non-convex problem.
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Example 

x

t

0 1
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